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This paper considers the asymptotic zero tracking error as well as string 
stability of large-scale automated vehicle convoys (LAVC). Both 
centralized and decentralized bi-directional network topologies are 
investigated. A double integrator dynamical equation is defined to 
describe the 1-D dynamics of automated vehicles (AV). A centralized / 
decentralized controller which employs the relative displacement and 
velocity compared with the backward and forward AVs is defined for all 
following AVs. Since the dynamical equation of LAVC is hard to be 
analyzed for internal stability, a PDE-based approach is introduced to 
decouple and reduce the closed-loop dynamical equation.  According to 
this approach, we will be able to decouple the dynamical equation of all 
AVs individually based on the error dynamics. After simplifying the 
dynamical equation of LAVC, the conditions satisfying the internal 
stability of centralized and decentralized networks are obtained. After that, 
algebraic analyses in frequency domain will able us to find the constraints 
on control gains guaranteeing the string stability. Simulation and 
experimental results are available to describe the merits of this algorithm. 
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1. Introduction 
The problem of traffic congestion has been a 

significant social, economical and environmental 
issue in all societies. Numerous undesirable 
outcomes such as noise/air pollution, time/fuel 
wasting, decreasing road capacity and safety, etc., 
are the results of traffic jams [1, 2]. The 
coordinated movement of AVs with the same 
constant speed and safe distances between AVs is 
called vehicle convoying (VC). The VC is an 
applicable and efficient method to implement the 
intelligent transportation systems (ITS) [3]. 

    The controller configuration of an AV is 
composed of two hierarchical levels. 1) High-level 
controller by employing several information such 
as the position of AV in the convoy, desired 
velocity, desired inter-AV distance, etc., computes 

the appropriate acceleration of the AV to follow the 
desired velocity specified by leading AV [4]. 2) 
Low-level controller receives the acceleration 
information sent by the high-level controller and 
sends the necessary rules to the braking and 
throttling systems to maintain the AV in the 
appropriate position in the convoy [5]. 

    Three approaches are used to tune the inter-
AV distances in a LAVC. 1) Constant Distance 
approach (CDA): the distance between subsequent 
AVs is always fixed. So that, the convoy’s length 
is always constant [6]. 2) Constant time headway 
approach (CTHA): the elapsed time by an AV to 
reach the forward vehicle’s position is always 
fixed. Therefore, the inter-vehicle distances and the 
convoy’s length will vary by changing the leader 
velocity [7] and 3) mixed distance approach 
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(MDA): the inter-AV distance is a function of the 
convoy’s velocity [8]. In a centralized network, the 
leading AV is connected with all following AVs. 
While in a decentralized convoy, some followers 
are not able to communicate with the leading AV 
[9]. 

   Two types of stability are considered in a 
convoy. 1) Asymptotic stability (internal stability): 
in which the distance tracking errors between all 
following AVs and the leading AV tend to zero 
asymptotically, the convoy is called internal 
(asymptotic) stable [3] and 2) string stability: in 
which the maximum value of distance errors has a 
decreasing trend along with the convoy [10]. There 
is a direct relation between the inter-AV distance 
approach and the string stability. For example, in 
decentralized networks with CDA, the string 
stability will not be satisfied [6]. 

    The large number of research works on VC 
can be categorized from different aspects. 1) Linear 
control approaches: safety/comfort analysis [11], 
MPC [12, 13], scalability [14], etc. 2) Nonlinear 
methods: Robust control [15], adaptive control [7], 
etc. 3) Time delay analysis [16]. 4) Centralized [6], 
decentralized [9], MLA [17], unidirectional [7], bi-
directional [18] and complex [6] network topology. 
5) String stability under different constraints [19]. 
6) Homogeneous [20, 21] and non-homogenous 
vehicular convoys [5] and 7) inter-AV distancing: 
CDA [22], CTHA [10] and MDA [8]. 

    In a LAVC, each AV communicates with its 
neighbors. So that, the closed-loop dynamics has a 
large dimension and therefore, the stability analysis 
may be difficult or even impossible. A large 
number of previous approaches can be applied only 
on convoys with a finite number of following AVs 
[4, 6, 8, 14, 20]. A decentralized unidirectional 
protocol is designed in [4] to assure stability in the 
presence of time delay. The results are verified by 
experimental studies. The non-uniform network 
topology is studied in [6]. In this paper, only the 
internal stability is studied, and the authors could 
not solve the string stability. The calculating of the 
stability margin in the presence of time delay in the 
frequency domain is presented in [14].  In [20], a 
second-order consensus law is designed to achieve 
the internal as well as string stability of centralized 
unidirectional networks. A leader following 
control method is introduced in [23] to achieve the 
third-order global consensus of homogeneous VCs. 
In [24], a centralized controller is designed to 
guarantee the stability under switching topology. 
Internal stability under the complex topologies is 
investigated in the following works [6, 8, 25]. None 
of these methods and similar works cannot be 

generalized on LAVCs. Moreover, if the 
communication topology switches between 
different configurations, the stability analysis will 
be more complicated [24]. On the other hand, the 
string stability of LAVCs is also challenging as 
well as the internal stability. Most of the previous 
methods, are not able to achieve to internal and 
string stability of LAVCs. Therefore, presenting a 
general solution for both of internal and string 
stability of centralized and decentralized bi-
directional large-scale vehicle networks is 
necessary. 

    Motivated by the mentioned defects, to obtain 
a comprehensive approach for internal and string 
stability of LAVCs, we present a novel method to 
decouple the dynamical equation of large-scale 
centralized/decentralized bi-directional VCs. A 
double integrator model is introduced to describe 
the 1-D dynamics of each following AV. A linear 
consensus scheme is proposed for following AVs 
utilizing the relative information (displacement and 
velocity) between forward and backward AVs. A 
PDE-based approach is developed to simplify the 
dynamical equation of each following AV and 
consequently, the essential constraints on control 
parameters satisfying stability (internal and string) 
will be obtained. The effectiveness of the proposed 
approach is illustrated by verification studies 
(numerical and experimental). The most important 
novelties of this paper are: presenting a new PDE-
based approach assuring internal and string 
stability for bi-directional LAVCs. 

    The remainder of our work is constructed as 
follows. Section 2 studies the internal stability of 
both centralized and decentralized networks. 
Section 3 solves the string stability problem. In 
section 4, the related numerical and experimental 
results are presented to depict the advantages of our 
method. In the end of this paper, the conclusion is 
presented. 

 

2. Internal stability analysis 
Fig. 1 depicts an AV convoy in longitudinal 

motion. This convoy consists of a leader and   
following AVs. 

 

 
Figure 1: An AV convoy in longitudinal motion. 
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2.1. Longitudinal AV dynamics 

    The following double integrator model describes 
the high-level dynamical equation of an AV [15, 
43, 51, 54]: 

/i i i i i i im x u x u m u                                       (1) 

where ,i i ix a m  and iu  denote the acceleration, 
mass and control law of the i-th AV, respectively. 
The controller is designed for two main network 
configurations centralized and decentralized 
communication topology. 
 
2.2. Centralized control design 

      For centralized network, the following control 
protocol is introduced for the i-th AV 
( 1,2,..., 1)i N    
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where f
i  and b

i are the forward and backward 
displacement gains, f

i  and b
i  are the forward and 

backward velocity gains, respectively and i  is the 
relative velocity gain with respect to the leader. 
Moreover, L  denotes the AV’s length and D  is the 
minimum inter-AV distance. For the last AV, the 
control law is designed as follows. 

1 1, 1
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The following figure depicts the dynamics of the 
closed-loop of i-th AV in the convoy. 

Combining (1) and (2) will result to 
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Based on CDA, the desired position of the i-th AV 
is considered as 

1

, 0 0, 0 1, 1
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(5) 

where 0,iD
 
is the desired distance between the 

leader and the i-th AV. We define the displacement 
tracking error according to 

, ,i i i d i i i d i ie x x e x x e x                        (6) 

By rewriting (4) in terms of tracking error and 
knowing that 1, , 1, 1i d i d i i ix x D L     , one can write 
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By defining that  1 1 2 2, , , , , , T
N Ne e e e e eE    , the 

dynamics of the closed-loop of the convoy will be 
as follows 

 

 
Figure 2: The dynamics of the closed-loop of i-th AV in the convoy. 
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E AE                                                                                (8) 

where 
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Calculating the eigenvalues of matrix A  for large-
scale networks is complicated or even impossible. 
In this paper, by employing a PDE model, we will 
decouple the 2 2N N  order dynamical model (8) 
to a double integrator dynamical model. Therefore, 
the complications of internal stability will 
dramatically reduce. 

    For simplicity, the following definitions are 
introduced.  
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Therefore, (7) can be written as follows: 
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For simplifying the internal stability analysis, we 
transform the 1-D coordinate of longitudinal 
convoy dynamics to a new coordinate in the 
interval [0,1]. In the new coordinate, the i-th AV 
position is at ( ) /N i N  as shown in Fig. 3.  

  
To derive the PDE approximation, we define the 
new function ( , ) :[0,1] [0, ) .ie p t R    Where p is a  

 

a) original coordinate 
 

 

b) new coordinate 

Figure 3: Original and new convoy coordinates. 
 

new variable in the new coordinate. This function 
satisfies ( )/( ) ( , ) |i p N i Ne t e p t   . According to the 

new coordinate, we define the following functions. 
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We can write 
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By employing the finite difference approximation, 
one can write 
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Therefore, the dynamical equation (10) can be 
represented by the following partial differential 
equation. 

                              
2

2

2 2 3
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The boundary conditions of (14) depend on the 
position of the leader in the new coordinate. 1p   
and 0p   are associated with the leader and the 
last AV in the convoy, respectively. Therefore, one 
can write 

(1, ) 0 ,

(0, ) 0

e t
e t
p







                                                             (15) 

To achieve the internal stability, the sufficient 
conditions on control gains should be presented. 
The following theorem introduces a necessary and 
sufficient condition on control parameters 
guaranteeing the zero-tracking error of centralized 
bi-directional LAVCs. 
 
Theorem 1. Under the following condition, a 
centralized bi-directional vehicular convoy is 
internal stable. 

0b
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Proof. Since (14) is a linear PDE and according to 
the boundary conditions (15), the separation of 
variables method is utilized to solve (14). By 
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2

2

2

2 2

2

2 2

0.5

1 0.5

m m
m i

f b f bm m m
i i

f b f bm m m
i i

d f df
dtdt

f d d
N

dpN dp

df d d
N

dt dpN dp

 

 
 

 
 

 

 

 
  

 
 

 
 

 
  

 

     (17) 

If the following conditions hold, the right-hand 
side of (17) will be presented as a product of two 
one-variable functions.  
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By replacing (18) in (17), one can write 
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Since the forward control gains f
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Equation (19) can be expressed as follows 
                               

2

2

2

2 2

0.5 2

m
m

f b f b m
i m i

m m
i m

d f
dt

dff
dt
d dN
dpN dp



 

 
 

 




 
   

 
                

     (23) 

where m  is a positive value. From the above 
equation, we will solve the following ODE in the p 
domain. 
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where m  can be calculated from the following 
boundary value problem 
                                                          

2
2

2 2 2 0m m
i m m

d dN N
dpdp

 
                             (25) 

with the following initial conditions 

(1) 0,

(0) 0

m

md
dp







                                                                   (26) 

The solution of ODE (25) is as follows 
                                

 
 

2
1

2
2

( ) cos 2

sin 2

Np
m m

m

p e c N p

c N p

  

 

  


                     (27) 

By employing the initial conditions (26), one can 
obtain 
                                  

 
 

2
1

2
2

(1) cos 2

sin 2 0

N
m m

m

e c N

c N

  

 

  

 
  

   2 2
1 2cos 2 sin 2 0m mc N c N               (28) 

and 

2
1 2

2
1

2

(0) 2 0

2

m
m

m

d
Nc c N

dx

c
c


  

 


    


 

          
            

(29) 

Combining (28) and (29) will result to 
                                       

 2

2 2

tan 2

2 2

m

m m

N

N
N

 

   
 

 

 
  

              

               (30) 

By defining that 22n mN    , we will have 

                                     
2

2
2

2

2
tan ( )

0.5

mn
n

m
m

N

N

 


 


 


   

 
   

 

                              (31) 

Taking Laplace transform of (24) will result to  

                                                     
 2 0f b f b

m m i i m m is s                                    (32) 

By employing the Routh method, we conclude that 
if the following inequality holds, (32) is Hurwitz.  
                                                                         

  0f b
i m i i                                                         (33) 

Since f b
i i  , if 0b

i   then (33) is assured and 
the proof is complete. 
 
 
2.3. Decentralized control design 
   For decentralized networks, the following control 
protocol is considered 
                                           

1 1, 1 1

1 , 1 1

( ) ( )

( ) ( )

f f
i i i i i i i i i i

b b
i i i i i i i i i

u e e D L e e

e e D L e e

 

 
   

  

      

     

 

 
        (34) 

The dynamical error of i-th AV can be expressed 
according to 
                                    

1 1

1 1

( ) ( )

( ) ( )

f b
i i i i i i i

f b
i i i i i i

e e e e e

e e e e

 

 
 

 

    

   


   

                               (35) 

Similar to the previous section, the PDE 
approximation of the above dynamics can be 
expressed as follows 
                                               

2 2

2 2 2

2 3

2 2

2

2

f b f b
i i

f b f b
i i

e e e
N pt N p

e e
N p t N p t

 

 

 

 

  
 

 

 
 

   

                                (36) 

Theorem 2. A decentralized bi-directional LAVC 
with the consensus protocol (34) is internal stable 
under the following condition. 
                                                                                             

0b
i                                                                          (37) 

Proof. Similar to theorem 1.   
 
Remark 1. According to theorems 1 and 2, large-
scale VCs either centralized and decentralized are 
internal stable under the same condition. In other 
words, by employing the PDE approximation to 
decouple the closed-loop dynamics, we are able to 
simplify the stability conditions dramatically. 
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3. String stability of LAVC  

    The sufficient conditions on control gains 
satisfying string stability of both centralized and 
decentralized LAVCs are derived in this section. 
 
3.1. Centralized network 

The dynamics of the closed-loop the i-th AV under 
the centralized control (2) is as follows 

 1 1

1 1

( ) ( )

( ) ( )

f b
i i i i i i i

f b
i i i i i i i i

a x x x x

x x x x x

 

  
 

 

    

    

    
    

                         (38) 

By taking Laplace transform of (38), one can write 
                            

 
   

2

1 1

( ) ( )f b f b
i i i i i i

f f b b
i i i i i i

s s V

s V s V

    

    

     

     
               (39) 

This equation can be expressed as follows 
                                                        

1 1 1 1i i i i iV G V G V                                                (40) 

where  

1 2 ,
( ) ( )

f f
i i

i f b f b
i i i i i

sG
s s

 
    




    
 

1 2 .
( ) ( )

b b
i i

i f b f b
i i i i i

sG
s s

 
    




    
 

The above relation can be written as follows 

1 1
1 1 1 1

1 1 1

1 1
1 1

11 1
1

1
1

i i i i
i i i i

i i i i

i i i i
i i

ii i i
i

i

V V V V
G G G G

V V V V

V V V G
G G

VV V V G
V

 
   

  

 
 

 


   

 
    

  

        (41) 

A convoy of AVs is string stable if and only if [26]  
                                                        

1

( )
1, 0

( )
i

i

V j
V j






                                       (42) 

Therefore, if 1 1 11 /i i i iG G V V   
  , the convoy 

is string stable. For the last AV we have 
1 1/N N iV V G  . Therefore, if the following 

inequalities hold, 1/ 1N NV V    and the convoy is 
string stable  

                                                              

1

1

0.5,

0.5
i

i

G

G
 

 




                                                           (43) 

Theorem 3. If the condition (44) holds, the LAVC 
is string stable. 

/ 2b
i i

                                                             (44) 

Proof. At first, we analyze the inequality 

1 0.5iG  
 . Consider that 1( ) /iG j a b  

where  
                             




2 2 2

2 2

2 2

2 2 4

( ) ( )

( ) ( ) 2

2 ( ) ( )

( ) 2 2 2

f f
i i

f b f b
i i i i

f b f
i i i i i

b f b f b
i i i i i

a

b

  

   

    

      





 

   

   

     

         (45) 

If the following inequality satisfies, then 
1 0.5iG  

  




2 2

2 2

2 2 4

( ) ( ) 2

2 ( ) ( )

( ) 2 2 2 0

b f f b
i i i i

f b b
i i i i i

f f b f b
i i i i i

   

    

      

  

   

    

     (46) 

It is a well-known fact that most of the energy of 
distance errors is at low frequency regions [17]. 
Therefore, if the coefficient of 0  be positive, the 
string stability is achieved or equivalently 

2 2( ) ( ) 2 0b f f b
i i i i      . By using f b

i i i
    , 

we reach to (44). By performing the same 
procedure for 1 0.5iG  

 , one can write 




2 2

2 2

2 2 4

( ) ( ) 2

2 ( ) ( )

( ) 2 2 2 0

f b f b
i i i i

f b b
i i i i i

f f b f b
i i i i i

   

    

      

  

   

    

         (47) 

Since f b
i i  , (47) is assured in the low frequency 

region and the proof is complete. 
 

3.2. Decentralized network 

The dynamics of the closed-loop the i-th AV under 
the decentralized control (34) is as follows 
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 1 1

1 1

( ) ( )

( ) ( )

f b
i i i i i i i

f b
i i i i i i

a x x x x

x x x x

 

 
 

 

    

   

    
   

                             (48) 

By taking Laplace transform of the above equation, 
we will reach to (40) where 

1 2

1 2

,
( ) ( )

( ) ( )

f f
i i

i f b f b
i i i i

b b
i i

i f b f b
i i i i

sG
s s

sG
s s

 
   

 
   








   




   

                      (49) 

Theorem 4. Under the following condition, a 
decentralized bi-directional vehicular convoy is 
string stable. 
                                                                                  

/ 2b
i i

                                                                         (50) 

Proof. Similar to theorem 3. 
 

4. Verification studies 

In this section, numerical as well as experimental 
results are provided to illustrate the advantages of 
the proposed methods in this paper. 
 

4.1. Numerical simulation 

In this subsection, a convoy of 10 followers and a 
leader is considered. In the simulation study, the 
following constants are investigated: 

, 14, 6 , 3.63, 1.4,f
i i i i iL D m      1.17f

i   and 
0.42, 1, 2,..., .i i N    Moreover, the acceleration 

profile of the leader is considered as follows with 
the initial velocity 20 /m s  

   2
0

0, 30s
( ) 1 / , 30 50

0, 50

t
a t m s t

t


  
 

. 

 

The main objective in vehicular convoying is to 
move with a constant velocity. Therefore, the 
accelerating maneuvers of the leader will be 
considered as an external disturbance. Fig. 4 
illustrates the distance error of the centralized 
convoy. As depicted, the maximum value of 
distance errors has a decreasing trend by increasing 
the number of following AVs and the convoy is 
string stable. On the other hand, all distance errors 
vanish asymptotically, demonstrating the internal 
stability. During the accelerating motion of the 
leader, the distance errors will not vanish but have 
a decreasing trend along the convoy. In Fig. 5, the 
velocity of all AVs is depicted. Due to internal 
stability of LAVC, all following AVs track the 
leader velocity asymptotically. 

Fig. 6 depicts the distance error for the 
decentralized network. Similarly, the maximum 
value of distance errors reduces and vanishes 
asymptotically. So that, the decentralized network 
is internal as well as string stable. According to Fig. 
7, all following AVs’ velocity converges to the 
leader velocity.  

 

 
Figure 4: Distance error of the centralized convoy. 
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Figure 5: AVs’ velocity in centralized convoy. 

 
Figure 6: Distance error of the decentralized convoy. 

 

Figure 7: Velocity of AVs in decentralized convoy 

0 20 40 60 80 100 120
15

20

25

30

35

40

45

Time(sec)

V
el

oc
ity

(m
/s

)

 

 

50 55 60

40

40.05

40.1

40.15

40.2

 

 

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

0 20 40 60 80 100 120
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(sec)

Sp
ac

in
g 

Er
ro

r(m
)

 

 

SE1

SE2

SE3

SE4

SE5

SE6

SE7

SE8

SE9

SE10

0 20 40 60 80 100 120
15

20

25

30

35

40

45

Time(sec)

V
el

oc
ity

(m
/s

)

 

 

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

3587 



A PDE-based approach to internal and string stability analysis of large-scale bi-directional vehicular convoys 

Automotive Science and Engineering (ASE)        3580 
 

3582 

4.2. Experimental study 

Three four-wheel mobile robots are used to verify 
the proposed control design methods for practical 
use. A mobile robot is shown in Fig. 8, which has 
three infrared distance sensor 2Y0A21 to measure 
the relative distance of two consecutive robots (the 
average is used for feedback control). The mobile 
car is driven by a 12 Volt-140 RPM Buhler DC 
gear motor and steered by four wheels (10 cm 
diameter wheel). The longitudinal speed is 
measured by an encoder on the shaft of the 
backward wheels. An Arduino Mega 2560 
processor onboard for each mobile robot functions 
as the real-time computing and control unit. 

 In the experimental study, the leader has the 
constant velocity 20cm/s during [0,5]s. After that, 
the velocity increases from 20cm/s to 28 cm/s 
during [5, 10]s, and keeps constant velocity 28 
cm/s again during [10, 15]s. The desired inter-AV 
distance is assumed to be 25cm. Moreover, due to 
low velocity of mobile cars, the air drag force is not 
considered. 

Table 1 presents the characteristics of mobile 
robots employed in the experimental studies. 

 
Figs. 9 and 10 depict the distance error and 

velocity of leading and following mobile robots, 
respectively. According to these figures, both 
internal and string stability of convoy are achieved. 

 
 

Table 1. Charactristics of the mobile robots 
Type of distance sensor Infrared 2Y0A21 

Type of DC motor 12 Volt-140 RPM Buhler 

Diameter of front wheels 10 cm 

Diameter of rear wheels 10 cm 

Type of processor Arduino Mega 2560 

Initial leader velocity 20 cm/s 

Safe distancing 25 cm 

                  

 

Figure 8: The following mobile robot.  
 

Velocity sensor Infrared distance sensor 
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Figure 9: Distance tracking error of robot convoy. 

 
Figure 10: Velocity tracking error of robot convoy. 

 

 
4.3. Brief discussion and comparisons 
Figs. 4 and 9 illustrate the efficiency of the 
proposed method in theorems 1-4. Both centralized 
and decentralized methods presented in section 3 
guarantee the internal and string stability of 
LAVCs without any limitations. In other words, the 
conditions (16), (37), (44) and (50) are satisfied 
easily and therefore, the internal and string stability 
of the closed-loop dynamics are assured. In other 
words, compared with most of the previous studies, 
the presented method introduces more simple 
conditions on control parameters. 
 
 

5. Conclusion 

The problems of internal (asymptotic) as well as 
string stability of centralized and decentralized 
LAVCs with bi-directional communication 
topology were investigated in this paper. A linear 
control utilizing the relative displacement and 
velocity compared with forward and backward 
AVs was designed. By introducing a PDE-based 
approach, the dynamics of the closed-loop system 
was decoupled and simplified. For each decoupled 
dynamical system, the necessary inequalities 
satisfying internal stability as well as string 
stability were introduced. Simulation and 
experimental results were provided to describe the 
merits of this algorithm. 
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List of symbols 
 Position of each AV   : ݔ

 Velocity of each AV   : ݒ

a:   Acceleration of each AV 

u:   Control input of each AV 
f :   Forward position gain 

b :   Backward position gain 
f :   Forward velocity gain 

b :   Backward velocity gain 

D:   Safe inter-vehicle spacing 

L:   Length of each AV 

 :   A positive gain 

N:   Number of AVs 

e:   Position error 

G:   Transfer function 

V:   Laplace transform of velocity 

xi,d   Desired position of the i-th vehicle 

E   Error vector 

t   Time 

 :   Frequency  
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